Lecture 1:

Overview of
Fortran 90

Fortran Evolution I

History:

O

O

FORmMula TRANslation.

first compiler: 1957.

first official standard 1972: ‘Fortran 66’.
updated in 1980 to Fortran 77.

updated further in 1991 to Fortran 90.

next upgrade due in 1996 - remove obsolescent
features, correct mistakes and add limited basket
of new facilities such as ELEMENTAL and PURE user-
defined procedures and the FORALL statement.

Fortran is now an ISO/IEC and ANSI standard.

Design Goals I

A compromise between:
O Fortran 77 as a subset:
O efficiency;
O portability;
O regularity;

O ease of use:

Drawbacks of Fortran 77'

Fortran 77 was limited in the following areas,

1.

awkward ‘punched card’ or ‘fixed form’' source for-
mat;

. inability to represent intrinsically parallel operations;

lack of dynamic storage;

non-portability;

. nho user-defined data types;

lack of explicit recursion;

reliance on unsafe storage and sequence association
features.

Fortran 90 New featuresl

Fortran 90 supports,
1. free source form;
2. array syntax and many more (array) intrinsics;
3. dynamic storage and pointers;
4. portable data types (KINDS);
5. derived data types and operators;
6. recursion;
7. MODULES
O procedure interfaces;
O enhanced control structures;
O user defined generic procedures;

O enhanced I/0O.

Source Form I

Free source form:
O 132 characters per line;
O extended character set;
O ‘v’ comment initiator;
O ‘&’ line continuation character;
O ';’ statement separator;

O significant blanks.

New Style Declarations and Attributingl

Can state IMPLICIT NONE meaning that variables must be
declared.

Syntax

< type > [,< attribute-list >] [::]&
< variable-list > [=< value >]

The are no new data types. (If < attribute-list > or
=< value > are present then so must be ::.)

The following are all valid declarations,

SUBROUTINE Sub(x,i,j)

IMPLICIT NONE

REAL, INTENT(IN) :: x

LOGICAL, POINTER :: ptr

REAL, DIMENSION(10,10) :: y, z(10)
CHARACTER (LEN=+) , PARAMETER :: ’Maud’’dib’
INTEGER, TARGET :: k = 4

The DIMENSION attribute declares a 10 x 10 array, this
can be overridden as with z.

New Control Constructs I

O IF construct names for clarity (new relational and
logical operators too),

zob: IF (A > 0) THEN

ELSEIF (A == -1) THEN zob

ELSE zob
chum: IF (c == .EQV. B >= 0) THEN
ENDIF chum
ENDIF zob

O SELECT CASE for integer and character expressions,

SELECT CASE (case_expr)
CASE(1,3,5)

CASE(2,4,6)
CAéﬁ(?:lO)
cAéﬁ(11:)
CASE DEFAULT

END SELECT

New Control Constructs I

O DO names, END DO terminators, EXIT and CYCLE,

outa: DO i = 1,n
inna: DO j = 1,m

Ié.ix == 0) EXIT

I%.&X < 0) EXIT outa
Ié.&x > 10) CYCLE inna
If.ix > 100) CYCLE outa

END DO inna
END DO outa

O DO WHILE but this superseded by EXIT clause.

New Procedure Features I

O internal procedures,

SUBROUTINE Subby(a,b,c)
IMPLICIT NONE

CALL Inty(a,c)
CONTAINS
SUBROUTINE Inty(x,y)

END SUBROUTINE Inty
END SUBROUTINE Subby

O INTENT attribute specify how variables are to be
used,

INTEGER FUNCTION Schmunction(a,b,rc)
IMPLICIT NONE ! New too

REAL, INTENT(IN) :: a

REAL, INTENT(INOUT) :: b

INTEGER, INTENT(OUT) :: rc

END FUNCTION Schmunction ! New END

10

New Procedure Features I

O OPTIONAL and keyword arguments,

SUBROUTINE Schmubroutine(scale,x,y)
IMPLICIT NONE ! Use it
REAL, INTENT(IN) :: x,y ! New format
REAL, INTENT(IN), OPTIONAL :: scale
REAL :: actual_scale
actual_scale = 1.0
IF (PRESENT(scale)) actual_scale = scale
CALL Plot_line(x,y,actual_scale)
END SUBROUTINE Schmubroutine ! Neater

called as

CALL Schmubroutine(x=1.0,y=2.0)
CALL Schmubroutine(10.0,1.0,2.0)

O Explicit recursion is permitted,

RECURSIVE SUBROUTINE Factorial(N, Result)
IMPLICIT NONE
INTEGER, INTENT(IN) :: N
INTEGER, INTENT(INOUT) :: Result
IF (N > 0) THEN
CALL Factorial(N-1,Result)
Result = Result * N
ELSE
Result =1
END IF
END SUBROUTINE Factorial

11

EXTERNAL Procedure Interfacesl

O INTERFACE blocks,

INTERFACE
SUBROUTINE Schmubroutine(scale,x,y)
REAL, INTENT(IN) :: x, y
REAL, INTENT(IN), OPTIONAL :: scale
END SUBROUTINE Schmubroutine
END INTERFACE

these are mandatory for EXTERNAL procedures with,
o optional and keyword arguments;
¢ pointer and target arguments;
¢ new style array arguments;

¢ array or pointer valued procedures.

12

New Array Facilities I

arrays as objects,

REAL, DIMENSION(10,10) :: A, B
REAL, ALLOCATABLE(:,:) :: C
REAL :: x = 1.0 ! new
A = 10.0 !' scalar conformance
B=A ! shape conformance
elemental operations,
B = xxA + Bx*B

sectioning,

PRINT*, A(2:4,2:6:2)
B(:,10:1:-1) = A(:,:)

array valued intrinsics,

B = SIN(A)
B(:,4) = ABS(A(:,5))

masked assignment,

WHERE (A > 0.0) B = B/A

13

Program Packaging — Modulesl

O the MODULE program unit may contain

<

<

<

definitions of user types,
declarations of constants,

declaration of variables (possibly with initialisa-
tion),

accessibility statements,
definition of procedures,
definition of interfaces for external procedures,

declarations of generic procedure names and op-
erator symbols,

the above provides basis of object oriented technol-
ogy.

O the USE statement,

<

&

names the particular MODULE,

imports the public objects,

O provides global storage without COMMON,

14

Stack Exannﬂel

MODULE stack
IMPLICIT NONE
PRIVATE
INTEGER, PARAMETER :: stack_size = 100
INTEGER, SAVE :: store(stack_size), pos = 0
PUBLIC push, pop
CONTAINS
SUBROUTINE push(i)
INTEGER, INTENT(IN) :: i
IF (pos < stack_size) THEN
pos = pos + 1; store(pos) = i
ELSE
STOP ’Stack Full error’
END IF
END SUBROUTINE push
SUBROUTINE pop(i)
INTEGER, INTENT(OUT) :: i
IF (pos > 0) THEN
i = store(pos); pos = pos - 1
ELSE
STOP ’Stack Empty error’
END IF
END SUBROUTINE pop
END MODULE stack

Rational Arithmetic ExampleI

MODULE RATIONAL_ARITHMETIC
TYPE RATNUM
INTEGER :: num, den
END TYPE RATNUM
INTERFACE OPERATOR (*)
MODULE PROCEDURE rat_rat, int_rat, rat_int
END INTERFACE
PRIVATE :: rat_rat, int_rat, rat_int
CONTAINS
TYPE(RATNUM) FUNCTION rat_rat(l,r)
TYPE(RATNUM), INTENT(IN) :: 1,r
rat_rat/num = 1%num * rinum
rat_rat/den = 1l%den * r’den
END FUNCTION rat_rat
TYPE(RATNUM) FUNCTION int_rat(l,r)
INTEGER, INTENT(IN) :: 1
TYPE(RATNUM), INTENT(IN) :: r

END FUNCTION int_rat
FUNCTION rat_int(1l,r)

END FUNCTION rat_int
END MODULE RATIONAL_ARITHMETIC
PROGRAM Main;
USE RATIONAL_ARITHMETIC
INTEGER :: i = 32
TYPE(RATNUM) :: a,b,c
a = RATNUM(1,16); b = 2*a; c = 3*b
b = axi*b*c; PRINT*, b
END PROGRAM Main

16

User Defined Entities I

O Define Type

TYPE person
CHARACTER(LEN=20) :: name
INTEGER :: age
REAL :: height

END TYPE person

TYPE couple
TYPE(person) :: he, she

END TYPE couple

O Declare structure

TYPE(person) :: him, her
TYPE(couple) :: joneses

O Component selection
himj/age, her/name, joneses’he/height
O Structure constructor

him = person(’Jones’, 45, 5.8)
them = couple(person(...),person(...))

17

Operators and Generics I

O Overloaded operators and assignment

INTERFACE OPERATOR (+)

! what + means in this context
END INTERFACE ! OPERATOR (+)
INTERFACE ASSIGNMENT (=)

| what = means in this context
END INTERFACE ! ASSIGNMENT (=)

joneses = himther
O Defined operators

INTERFACE OPERATOR (.YOUNGER.)
| what .YOUNGER. means
END INTERFACE ! OPERATOR (.YOQUNGER.)

IF (him.YOUNGER.her)
O Generic interfaces (intrinsic and user defined),

INTERFACE LLT

! what LLT means in this context
END INTERFACE ! LLT
INTERFACE My_Generic

! what My_Generic means in this context
END INTERFACE ! My_Generic

IF (LLT(him,her))

18

Pointers I

Objects declared with the POINTER attribute

REAL, DIMENSION(:,:), POINTER :: pra, prb

pra is a descriptor for a 2D array of reals,

objects to be referenced must have TARGET attribute,
REAL, DIMENSION(-10:10,-10:10), TARGET :: a

a pointer is associated with memory by allocation,
ALLOCATE (prb(0:n,0:2*n*n) ,STAT=ierr)

pointer assignment,
pra => a(-k:k,-j:j)

{\tt pral} is now an alias for part of {\tt al}.

pointers are automatically dereferenced, in expres-
sions they reference the value(s) stored in the cur-
rent target,

pra(15:25,5:15) = pra(10:20,0:10) + 1.0

19

Pointers and Recursive Data Structuresl

O Derived types which include pointer components
provide support for recursive data structures such

as linked lists.

TYPE CELL
INTEGER :: val
TYPE (CELL), POINTER :: next

END TYPE CELL

27 3458 I

Val next Val next

O Assignment between structures containing pointer
components is subtlely different from normal,

TYPE(CELL) :: A
TYPE(CELL), TARGET :: B
A =B

iS equivalent to:

AYval = BYval
AY%next => BY%next

20

Parameterised Data TypesI

O Intrinsic types can be parameterised to select accu-
racy and range of the representation,

O for example,

INTEGER(KIND=2) :: i
INTEGER (KIND=k) :: j
REAL(KIND=1) :: x

where k and m are default integer constant expres-
sions and are called kind values,

O can have constants
24_2, 207_k, 1.08_1

O SELECTED_INT KIND, SELECTED REAL KIND can be param-
eterised and return kind value of appropriate repre-
sentation. This gives portable data types.

INTEGER, PARAMETER :: k = SELECTED_INT_KIND(2)
INTEGER, PARAMETER :: 1 = SELECTED_REAL_KIND(10,68)

O a generic intrinsic function KIND(object) returns the
kind value of the object representation:

¢ KIND(0.0) is kind value of default REAL.
¢ KIND(O_k) is k.

21

New I/O Features I

O normal Fortran I/O always advances to the next
record for any READ or WRITE statement,

O Fortran 90 supports non-advancing form of 1/0O
added,

WRITE(...,ADVANCE="NO’,...) a

appends output characters to the current record
and

READ(...,ADVANCE="N0’,...) a

reads from the next available character in a file

READ(...,ADVANCE="NO’ ,EOR=99,SIZE=nch) a

detects end of record and nch will contain the num-
ber of characters actually read.

22

Advantages of Additionsl

Fortran 90 is:

O more natural;

O greater flexibility;

O enhanced safety;

O parallel execution;

O separate compilation:

O greater portability;
but is

O larger;

O more complex;

23

Language Obsolescence I

Fortran 90 has a number of features marked as obso-
lescent, this means,

O they are already redundant in Fortran 77;

O better methods of programming already existed in
the Fortran 77 standard;

O programmers should stop using them;

O the standards committee’s intention is that many
of these features will be removed from the next
revision of the language, Fortran 95;

24

Obsolescent Features I

The following features are labelled as obsolescent and
will be removed from the next revision of Fortran, For-
tran 95,

O

O

the arithmetic IF statement:
ASSIGN statement;

ASSIGNed GOTO statements;
ASSIGNed FORMAT statements;
Hollerith format strings;

the PAUSE statement:

REAL and DOUBLE PRECISION DO-loop control expres-
sions and index variables;

shared DO-loop termination;
alternate RETURN;

branching to an ENDIF from outside the IF block;

25

Undesirable Features I

fixed source form layout - use free form;

implicit declaration of variables - use IMPLICIT NONE;
COMMON blocks - use MODULE;

assumed size arrays - use assumed shape;
EQUIVALENCE statements;

ENTRY statements;

the computed GOTO statement - use IF statement:

26

